Chandrayaan 2 is on a mission unlike any before. Leveraging nearly a decade of scientific research and engineering development, India's second lunar expedition will shed light on a completely unexplored section of the Moon — its South Polar region. This mission will help us gain a better understanding of the origin and evolution of the Moon by conducting detailed topographical studies, comprehensive mineralogical analyses, and a host of other experiments on the lunar surface. While there, we will also explore discoveries made by Chandrayaan 1, such as the presence of water molecules on the Moon and new rock types with unique chemical composition. Through this mission, we aim to

India’s Geosynchronous Satellite Launch Vehicle, GSLV MkIII-M1 successfully launched Chandrayaan-2 spacecraft at 2:43 p.m. IST on July 22,2019 into its planned orbit with a perigee (nearest point to Earth) of 169.7 km and an apogee (farthest point to Earth) of 45,475 km. The launch took place from the Second Launch Pad at Satish Dhawan Space Centre SHAR, Sriharikota. After the injection of Chandrayaan-2 spacecraft, A series of maneuvers will be carried out to raise its orbit and put Chandrayaan-2 on Lunar Transfer Trajectory. On entering Moon's sphere of influence, on-board thrusters will slow down the spacecraft for Lunar Capture. The Orbit of Chandrayaan-2 around the moon will be circularized to 100x100 km orbit through a series of orbital maneuvers. On the day of landing, the lander will separate from the Orbiter and then perform a series of complex maneuvers comprising of rough braking and fine braking. Imaging of the landing site region prior to landing will be done for finding safe and hazard-free zones. The lander-Vikram will finally land near South Pole of the moon on Sep 7, 2019. Subsequently, Rover will roll out and carry out experiments on Lunar surface for a period of 1 Lunar day which is equal to 14 Earth days. Orbiter will continue its mission for a duration of one year.

Science experiments

Chandrayaan-2 has several science payloads to expand the lunar scientific knowledge through detailed study of topography, seismography, mineral identification and distribution, surface chemical composition, thermo-physical characteristics of top soil and composition of the tenuous lunar atmosphere, leading to a new understanding of the origin and evolution of the Moon.
The Orbiter payloads will conduct remote-sensing observations from a 100 km orbit while the Lander and Rover payloads will perform in-situ measurements near the landing site.

Post a Comment

Previous Post Next Post